

Mathematics Tutorial Series

Differential Calculus #8

The Chain Rule

Example 1:

The equation $x^2 + y^2 = 9$ gives a circle centred at the origin with radius 3.

We can solve for y as follows:

So

$$y^2 = 9 - x^2$$

$$y = \sqrt{(9 - x^2)} = (9 - x^2)^{\frac{1}{2}}$$

Here we have a chain of functions. We start with x then calculate $9-x^2$ and finally take the square root. Spreading this out we have:

$$u = 9 - x^2$$

$$y=u^{\frac{1}{2}}$$

In this example, I have ignored the domains of the functions.

Remember: in real numbers, there is no square root for a negative number.

Here are some other examples of chains of functions. That just means we plug each one into the next.

Example 2.

$$y = (x^2 + 1)^4$$

so write

$$u = x^2 + 1 \text{ and } y = u^4$$

Example 3.

$$y = (\sin x)^{\frac{1}{2}}$$

so write

$$u = \sin x \text{ and } y = u^{\frac{1}{2}}$$

Example 4. NOT THE SAME AS EXAMPLE 3

$$y = \sin(x^{\frac{1}{2}})$$

so write

$$u = x^{\frac{1}{2}}$$
 and $y = \sin u$

The Chain Rule

If y can be written as a function f(u) of u and then u can be written as a function g(x) of x then the formula for the derivative is:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Example

If $y = (x^2 + 1)^4$ then

we can write $y = u^4$ with $u = x^2 + 1$.

So

$$\frac{dy}{du} = 4u^3$$

$$\frac{du}{dx} = 2x$$

and using the Chain Rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 4u^3 \cdot 2x = 4(x^2 + 1)^3 (2x)$$

Example

If
$$y = (9 - x^2)^{\frac{1}{2}}$$
 then

write $y = u^{1/2}$ with $u = 9 - x^2$.

So

$$\frac{dy}{du} = \frac{1}{2}u^{-\frac{1}{2}}$$

$$\frac{du}{dx} = -2x$$

and using the Chain Rule

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{2}u^{-\frac{1}{2}} \cdot (-2x)$$

$$=\frac{1}{2}(9-x^2)^{-\frac{1}{2}}\cdot(-2x)=\frac{-x}{\sqrt{9-x^2}}$$

Sketch of the Proof of the Chain Rule

Let y = f(g(x)) and suppose we want the derivative at a.

$$\frac{f(g(x)) - f(g(a))}{x - a}$$

$$= \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \cdot \frac{g(x) - g(a)}{x - a}$$

As x goes to a also g(x) will go to g(a). This requires proof. It makes the first quotient into the quotient in the definition of a derivative.

Essentially, since g(x) has a derivative at a, the limit

$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

exists. Then since the denominator goes to 0, the numerator must also go to 0.

Summary

- 1. The Chain Rule is very important and easy to understand. With practice you can become proficient.
- 2. The Chain Rule calculates the derivative of a function that is obtained by substituting a series of functions one into the other.
- 3. If y = f(g(x)) then, with u = g(x), we have $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{df}{du} \cdot \frac{dg}{dx}$
- 4. With practice you will be able to drop the use of the "let $u = \dots$ " step
- 5. Chain Rule is the basis of the most powerful integration technique substitution.